Translation Model Adaptation Using Genre-Revealing Text Features

Marlies van der Wees Arianna Bisazza Christof Monz Informatics Institute, University of Amsterdam

adaptation for SMT prioritize translation candidates that are most relevant to current task Heterogeneous training data Specific translation task

Contribution

genre adaptation for SMT

- adapt system to multi-genre translation task
- exploit document-level genrerevealing text features inspired by classification literature
- replace dependency on manual domain labels with automatic measures of genre

Approach

if not available: manual labeling is labor-intensive and can be arbitrary

adaptation scenario

- Arabic-English phrase-based SMT
- translation model adaptation with a vector space modeling (VSM) approach
- two test sets with two genres:Gen&Topic*:

newswire (NW)

user-generated comments (UG)

NIST 2008+2009:

newswire (NW)

user-generated weblogs (UG)

vector space modeling (VSM) adaptation approach**

* Van der Wees et al., What's in a Domain? Analyzing Genre and Topic in Statistical Machine Translation, 2015

new decoder feature: similarity between each phrase pair and dev set

source	target	p(f e) p(e f)	phrase vector	similarity score
الحمد ل	praise be to	0.1 0.2	$< w_1 w_N >$	0.1
الحمد ل	praise for	0.2 0.2	$< w_1 \dots w_N >$	0.2
الحمد ل	thank	0.1 0.2	$< w_1 w_N >$	0.4
حبيبتي ي	my dear	0.2 0.1	$< w_1 \dots w_N >$	0.3
حبيبتي ي	my love	0.2 0.1	$< w_1 \dots w_N >$	0.4
حبيبتي ي	my sweetheart	0.1 0.1	$< w_1 w_N > $	0.1

Vector for development set: $\langle w_1 (\text{dev}) \dots w_N (\text{dev}) \rangle$

vectors can be constructed from

- provenance features:
 manually grouped subcorpus labels
- topic features:LDA-inferred topics
- genre features:
 counts of exclamation marks,
 question marks,
 repeating punctuation,
 emoticons, numbers,
 first & second person pronouns

* Van der Wees et al., What's in a Domain? Analyzing Genre and Topic in Statistical Machine Translation, 2015

** Following Chen et al., Vector Space Model for Adaptation in Statistical Machine Translation, 2013

Results

improved translation performance

- automatic indicators of genre can replace manual sub-corpus labels
- best system with automatic features: genre+LDA

projection across languages

 similar performance for feature values computed on Arabic or English side of the bitext

increased translation consistency

- phrases with identical translations for each occurrence in a single document
- higher consistency for genre-adapted system

Conclusions

we address genre adaptation by

- distinguishing genre from provenance and topic
- using genre-revealing text features for translation model adaptation
- eliminating the need for manual sub-corpus labels

the proposed method

- improves translation quality over a competitive baseline
- exploits features that can be projected across languages
- increases document-level translation consistency

This research was funded in part by the Netherlands Organization for Scientific Research (NWO) under project number 639.022.213

